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This paper toaniders a speeial elass of transportation problesy o vhich the needs
of pach wrer 2re to be suppliad <atirely by one af el available sources, We

Eient show that an sptismus suluetion ta this apecial tvansportation probien is 4
basic Learible =olutdion o a slightly differont standard transportation problaﬁ.

& braueh and bound solution procedure for finding the desived nuluti@n to the
latter is then presentzd and {1lustrated with an cxaple, We thow consider an
extension of tils problas by allowing the posafbility of incressing (st a4 cost)

the wouree capacities. ‘The problem fermulation is shown to provide a geiweralization
to the welisknown ansipneont problem. - The selutira precodure appears to b ‘
relatively swove wffxcient viten the neaber of uses greatly exceeds the nusber

of sourcus.
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ABSTRACT

This paper considers a speclal class of transportation problems
in which the needs of each user are to be supplied entirely by one of
the available sources, We first show that an optinmum solution to this
special transportation problem is a basic feasible solution to & slightly
different standard transportation problem., A branch and bound solutioa
proéedure for finding the desived solution to the latter ie then presented '
and illustrated with an exanmple. We then consider an extersiona of this
brublem by allowing tue possibility of increasing (ét a coat) the source
capacities. The problem fowmulation is shown to provide a generalization
to the well-known assignment problem.  The solution procedure appesre
to be relatively moro officient whon the numbex of uses grestly cxceeds

" the wumber of sourcas,




1. INTRODUCTION

In a recent paper [4], DeMaio and Roveda consider a special class
of transportation problems with a set of sources I = {1,2....,1,...,W]
having known capacities b, and a set of uses J = {1,2,.00,),c00,M} with

i

known demands rj for a homogeneous material (the b1 and rj are assumed
to be strictly posftive). The objective is to minimize the total tramsporta-
tion cost 2 subject to the constraints that (i) esch user's demand is
fulfilled by exactly one of the sources, and (ii) the total amount shipped
from each source does not exceed its capacity. Denoting by cij the cost
of tramsporting all chev rJ units from the ith source to the jth wuse

and defining Y te be 1 or O depending on whether or not use j is assigned

to source {, the problem ts to

mintmize 2= ¥ T ¢, X, (v
el ja R
- subjeet to the constralnts:
T e, Db for el o (@
jE'J o+ 4 . . N . -
S Xy 1 for jeJ, and - - (3)
iel — ' : :
1 By ot 0 or 1 for dei amd el _ Ar (@)

The authars'§£ltaj'presenz-an implicit enumcretion spproach to solving
Vtﬁis problem. fIn $»etinn <2 e shau.that an optinal -olqttou té‘this prodlem
can be'chnr%cta;iawd‘as a Sasie'fcaeﬁble solution t§ a slightly modified
Eranspartation problen and that such a salnﬁién can be abealned’§y an algorithn“
similar to the subtour eliuﬁnsélo# method for solving travelioy sslesman
 problass {35, ], ‘Siwce our algoritha ut{lizes the underlying structure of
-the ;rausparéanion problem, it i belleved to be computationally more efficient

thas tite {aplicit enuzeration approach. As vill be seen ie Section 2 the
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present algorithm appears to be particularly suitsble when the number of
uses far exceeds the number of sources, Furthermore, our approach can be
easily extended to problems where capacity expansion for warehouses is a
possibility. 1In Scction 3 we consider this extension and provide other

practical applications covered by this model.

2. THE ALGORITHM
To bring the problem (1)-(4) into the standard transportation format,

we first make the transformations

yij = rjxij for ie¢l and jeJ, and (5)
dth = cij/rj for {eI and j&J; (6)
i.0., vyij denotes the amount shipped from source i to use ) at uait

cost dij' To convert the inequalitics {2) into equations, we adopt the

usual procedure {31 of adding a slack use M + 1 and setting

+

Jhm 3o M+ 1), I ¢))
ey ® 0 for 461, and '. (8).
“‘ L Y: [),_ . : 1 4 . (9)
M+l iel i jSJ j
“The problem (1)<(4) can thew be verified to be equivalent to:
minivize 22 T L d .y (10}
el JeJd' i; L
subject to chc:cunstrﬁlnts;
T, ¥ b for del, ' » (1)
VA | -
Tov o ey el - 12
AR ol for jed : | (12)
LN 0 For ie¢l and JeJ’', and , - (1))
« 0 or v, ior ic¢l aud jeJ. : (14)

iy 3

A
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The problem (10)-(13) is a standard transportation problem aud hence
can be solved by the primal transportation algorithm (also known as the MODI
method [3]), We assume that the reader is familiar with the usual terminology

that a cell is an index palr (i,j) with row (source) { and column (use) jeJ;

a basis B to the problem (10)-(13) is a collection of (W + M) cells without
cycles (loops or stepping-stone tours) and such that every row iel and
column jeJ' has at least one cell. A solution {yu} is basic if y“ =0
for (i,j)é B. A basic solution is feasible if the {yij} satisfy the con-
straints (11)-(13), It is well known [3] that the MODI method yields a basic

optimal solutiou (i.e., a basic feasible solution for which cost 2z {s

minimal) to the problem (10)-(13).

DEFINITION 1. We define P to be the standsrd transportation problem
(10)-(13) and P’ to be the gpecial transportacion problem (10)-(l4). We

define a basis to be row-unique, if corresponding to every =olumn jeJ,
there is an unigue row ij such that (L,j)eB 1if and only if { = 11.

By detinition, B has W+ M cells. Since a row-unique basis has
exactly one cell for cach column  jeJ, it follows that the M + 1%t column
has W cells: L.x., (u,MH)eB f{or every fel. (Such a basis cannoc have
cycles gince only the M + 1°% columu contains more than ope cell,)

Theorem 1 below establishes the connection between the problems P
and P,

THEOREM 1, There is a one-to-one correspondence betwvaen feasible
solutions to P’ and row-unique basic feasible solutions Co P.

PROOF, Consider any feasible solution (yljj to P, By (12)(14)
qud from the assumption that rJ > 0, tt follows that corresponding to every

use j2l cthere is an unique source i, such that 71) >0 if end only if

J

i ii' Correnponding to this solution we define B to bs the sot of W N

L I T P T o
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cells {(ij,j) for jel U (i,M+l) for iel}. C(onsequently, the solution {yij}
is basic since Vii © 0 for (i,])éB. It is a feasible solution for P
since {yiij is feasible for P’. Since B 1is defined uniquely, this

correspondence is unique.

To prove the converse, assume that we have a row-ynique hasic feasible
solution {yij} to P. By (12)-(13) and row-uniqueness it follcws that cor-
responding to every column jeJ there is an unique row ij such chat
;; iy T r, if i= ij and zero otherwise, Consequently (14) is satisfiaed
: and from (11)-(13) it follows that {yij} is feasible to P’ as well.
Furthermors this correspondence is unique thus completing the proof.,

By Theovem 1 and from the fact that the problems P and P’ ohare a

cormon objective function (10) it now follows that:

COROLLARY 1: Tnere is a one-to-one correspondence betveen optimal
solutions to P’ and the optima among the row-unique basic solutions to P,

4 solution procedure to the problem P’ now easily follows somewhot
along the lines of the subtour elimination algorithms for the traveling-
salesman problem {5, 7],

This algorithm 1s basically a braach-and-bound procedure which
bogins by partitioning the set of row-unique besic feasible solutions lné,theﬂ
raiculating lower bounds on the costs of all solucione im @ subset. The |
{nitial bound is found by solving the standard transportetion problem 2.

[f the basic optimal solution to P is rvow-unique then we arve finished in
the sense that we have an optimal solution to P’ as vell (Corollary 1),
Suppese »n the vontvary that the basic optimal solution to P is not row-

unique. Let us denote by J° oue of the coluons jeJ which has more than

than one cell helongiug to B and let (1',3') be one such basic cell,

L . . o
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(Though any such (i’,}’) can be chosen, we diacuss delow a heuristic for
chovsing a ‘good' (i’,]”) from the point of view of computational cfficioncy.)
We now branch intoe two subproblems (a) the subset in which (i’,1’) is a cell
in the optimum row-unique basic-optimal solution; and (b) the subset {n which
(1,77 is not a cell in the optimum solution, Tha two nev transportation
probloms corresponding to (a) and (b) are solved to determine the lower bounds
tor ail row-unique basic optimal solutions {n their respective subsets, If
the optimal solution corresponding to any one subset is vowsurique and the cost
of this aclution is lluss than or equal to the lover bounde oun all other subsets
thep such a wolution is optimal. If net, then one selecte that subset having
v cmad lest Jowser bound and branches hgatn into two aubprodblems, Eventually
ene 1w asvared of findang an optimes rows=unique bastic op%ﬁnﬂ solution end
ceatyguently :;n aptimua to 7?-’ (by Corollavy 1), | | |

”?:s"»"s:-t‘n'&_ cuompents on the above algorithe ave m ta ovder, Firvet, it is
uzv.ein.-'.-; ';‘.g.;:; thie ;,s;-m~@:hnre for dranching un & aon vow-unique baste ozcludes
U;.‘Vztv e .is‘sm%.s .ﬁ;v! ‘o f.gbsasé but Joos not es#lude any mwiqn& besis,
i -tsh:i"a‘it!‘ﬁ-‘n Couverges in n flnite twader of steps since ‘t&e.ﬁotal n‘u_ber’
Ry ég;;' ow i 't_miu- and since at least one bi'sis ix excl_’ﬂtd at evecy iterstion.
Sevomd; t.i;m li.%\‘.;ftm“ﬁ'ipg s»‘wtm&:_lre rusuits in lpill't#t‘lﬂi of the m&-unig\&e
§=;‘!§;i }mnc%éeu— wolutavis {0 that subset and heece the slgoritha can be expected
et bs v{fiﬁc‘m.. Thivd, for Lhe subproblae with (1°,5°) constrained to be in
Hw" u.;;x,m_mi »"-'ujil'd'iii;\i%, by !'oﬁ-uaiquenesil it follows that {473 'Y is the only
v «-:ﬁ‘,m. vo §-”'.‘ Consequently, we can drap column ' from further cons

wageiaiten, moedity b o bi, - v ., std xolve & ssaller tvansportation

i 3
problem.  Thie reduction in by s may turther ‘simplify the prodlem sioce the

¥

rentes i L1y for wiich rj \s greste: than the asw walua of blocm

RPN TR P N ST 15T SR D R
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possibly be in the optimum soluticn (such cells can be eliminated by de-
fining d, T @), Fourth, the optimal solutions to the subproblema can be
<friciently obtained by the operator theory of parmaetric programming
developed in [8, 9] rather than re-solviag, Noreover, the backtracking steps
of the branch nd bound procedure may also be done this way. FPinally, a
non-vow-unique bas.s can have at most W colump: which have more than ene
wn‘ £ehis follows fran the fact that a4 basis has W 'c-ﬁ celle vith at
-l_cas: sue ¢¢ll tov cach af the M columns). Consequeotly the fractiom of
e masiaum tamber of columny vhich do not satisfy voweunnfiqueness is WM.
thee the propoved algorithe can be expected to he velativaly nove evf»ficuu_t
for problems whare TR ‘tw:n{mr of uscs gggu:ly exceeds the aumber -of SOURCRS .
We now consider the question of choosing the eell (1 .47 upon whitch -
Lo wale :hgcmuta:‘s@cyél praée&ipre brgmch‘. Let us denote by ‘.!' 7‘&‘9 set nf
cobwnse that have Do or wore cells of the Dasis sffc J). Given a column |
_‘ Ig,j. we spgEgent bz’as‘@hiﬁg on that bagic cell (i‘,n !‘6}; which dii in the
tallest, .’ﬁién along the_bf;mh ia shich (i,3) u-mﬁ!mdd feom the optisal
Caplution t-h?, ;gtt cati be es.m. At increase cppré:it_u_tiliy by 'a’ -;:(.dq-dii)yi j'
wiete ﬁ.w. is the dext staallest cast of ‘s basic gell te calﬁq 3 end YUH-"
is zs.n; 'm'.-}emn:; smm;ea via the scallest cost bestc mi 1,3, Conseguantly, .
tes tﬁ:amﬁmg. w van choose the com‘m' fj'.'d‘ Eor which Aj {s the ltt’:&"ﬂ _'
and Sraneh on (i L 17) shere  (1°,1°) bas the lowest cost wwong all bastc |
Ceeibsoin o sluwm 13'. ' o | |
¥e wwarize the above results in Algorithm 1 for selvigg tlie special
{ronsgaciation ptoblsy, A : )
MOORITHR L. For Yindiag an optimal soluticu to the special teensporta-

Loy probles (1)),
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Set up the problem P defined by (10)-(13). - Let Pl deacte the -
problem P, i‘el @ deucte the set of cells constratned to be imauded
in the optimum solution and ‘i’l = @ denote the of cells excluded
from the aptimum solu:i'o_p, Let Yl be the’op.ttmun solution to Pl

with basis B, and cost 21 (this may be obtained by the primia.. (MNODI)

method}, Let S

"

{1} denote the set of probiess under consideration and
let m =1 denote the total number of problams genersted so far,

Choose the problem P for which Z, 1s the smallest for LeS5. If Bk

is rowsuaique go te (5), Otherwise go to (3).

ta) Find the set of columns Jﬁ' for which the basis Bk has two or
more basic cells in that eoluan, | For each column j_cJ* tind the
two basie c-sal-lsv (i.}) and (&,}) for which the unit custs ave :he
o b les b and che z_aéemaai saallest respectively. Define &
and choose the  Hel” for which 3, s tha largest. Selest the

Dowest zost Pante cedl (87,37 tn columa 3 ', for branchteg.

C¢hY e Define 't?;hﬂ_ as p&*ablaex obtained from P& by conntraining

STV e be gk additionsl bagfe coll ey Gy oV @
and let ‘_.*m‘ « Y. The prebles ¥ asl U0 be obtained fran ¥ by
dropping. coluan  § 1 and &emmg by s tobeb .- ¥ For colusas §

Cgtch tiat v - bﬁ » defiae d »1 .,

LA

4 . dc) Betinme Foas 98 che p*nbim obtatned frow Pk by excluding {4',) ")

e "uw msa:;al hgsig. ,_sot Yy ® .V“,Uiit 3 G, :di 'j i. ~ =)
and Ivt {'.1“2 = ;Zk.

4y fBenote the bagje qptim!_ #nlutious to ¥ o1 and -P.ﬂz f_‘o_biaimd by
the NOH1 =metiwd} to be Yﬂ*l and Y&&? Vvubku l-ﬂ and 'Uﬁz.
.Deihw Zoai optimal cost to Peﬂ + (1 ”&!,: rjc'l'“ aad
* wil
Zor ™ optimal cost to i‘sﬂ? b Ly d

¢ | c.”@ﬁ.'z

by = Uyt

3
JE
i

s e

&

R

%7
3¢
&
<

5
k3

K]
25

[
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4, Drop k from Lhe set S and add (m+l) and (m+2) to S. Redefine =
as mt2., Go to (2.

5. The optimal solutisn to the special transportstion problem (1-4) is given
by Y.K and Qk with the associated cost = optimal cost to

P, + r.d... Stop.

¥
e 1
We illustrate below the application of Algorithm 1 with the same

example as was solved in [4]. Fig. la shows this problem with four sources

S1,...,584, five uses Ul,...,U5, costs Cij’ capacities bi and demands tj
as shown, Note that since 1] > b4 and r, > b&’ the ceils (1,4) and

(2,4) cannot possibly be in the optimum solution, Consequently i ® Cay © ®,

Figure la - id about here

At step (1) of Algorithm 1 we set up the transportation problem P1 =P

as shown in Fig. 1lb, by adding a dummy use U6 with demand
i

3
vy = T b, - S or,= 1ld=-11=3 (eqn. {9)) and defining costs dij as
’ =1 h j::

per equatiens (6) and (8)., TFor the problem PI none of fhe calls are
constrained to be included or excluded in the optimum solution sn that
‘G] = ?1 = (¢, The optimum solution to Pl obtained by the primal method (the
- cap;citigs bi were perturbed slightly to preveant cycling [3}) is also shown
ﬁn Fig. la where the circled cells denote the basic cells with the amounts yij
written over the circles (yij = 0 for non-basic cells), The optimum value
tor the objective function can be verified to be 2, « 19/3., We now set m = 1
and § = {1}, In step (2) of th> algovithm, we find that the basis of Fig. 1b
is not row-unique so hat we proceed to step (3).

In step 3(2) we find 1Y = {1,2} so that by = (2/3 - 1/3) x 1 = 1/3

and A, = (1 = 1/3) x 2 = 4/3 so that 17«2 and (1°,37) » (2,2). In

[2:%;,.?;«;;&'3""”"""'; e e et igmes o 5:‘.‘_,’ “ - -,
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step 5(b) problem P

wich €2,2) constrained to

is defined as problem P

2 1

e iacluded in the basis {(i.e., Qz = {(2.2)} and ?2 = @), Consequently,
we drop use U2 and change b2 to b, - £
the cells (2,1}, (2,3), (2,4) can not be in the optimal

=4 -3 =1, Since rys T3 and T,

are greater than b2’

solution so that we set dyy = d23 = dza = ® and obtaln P,. The optimal

&

solution to Pz, shown ir Fig., lc., was cbtained by the primal method, The

optimal cost of the solutioun &2 2, can be verified froms Fig. lc to be 23/3
so that 2, * (23/3) + T rd, . o= {23/3) + (2 x 1/3) = 26/3. Similarly
: (i,ne, $H -

-

P, is obtained from Py by excluding (2,2) from the optimal solution (03 = §,

3

= {(2,2)1), o equently d,, is set equal to o in Fig. 1d. The optimal

3 2
solution to by is also shown in this figure with 33 = 25/3, The branching
of P, to P, and P, on the basis of cell (2,2) can be scen in Fig, 2
as well, We now set S = {2,3] and m=3 and return to step (2).

Since 2y < 2, and since By 1is not row-unique we sow branch the

*
problem Py into two subsets., From Fig. 1d, J = {1,4}, A1 = 2/3 and

~+

4, = 1lso that ' =4 and (17,7") = (3,4), In step 3(b) we define P,
to be the same as P3 but with (3,4) coﬁstrained to be included in the
optimal solution (i.e., Q = {(3,)} and ?a = {(2,2)}). Consequently we
drop U, and change b3 to b3 -y, = 3 - 3w, Since Ty Ty Ty are
greater than b3 ‘we make d31 = d32 n d33

solution to I-’4 is shown in Fig. le with cost 25/3 <o that ZA-25/3+(rhxd

= o to obtain Fig. le, The optimsl

Figures le ~ 1lh about here

fig. 1F shows the problem P, obtained Lrom l?3 by constraining (3,4)

5
to Lo excluded from the optimal solution (i.e., Vs = {¢2,2), (3,4)1), We

mark dM = o and obtain the row-unique basle optimal solution of Fig. 1f, with

2. % 9, In step (4), § becomes {2,4,5} and mw 5.
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We now return to step (2) of the algorithm to find that 22 is the

smallest among the problems in S so that we branch P2 to P6 and P7

on the basis of cell (3,1) as shown in Figs, 1g and lh. Now § becomes
{4,5,6,71 so that 25 is the smallest cost, Since Y5 i row-unique,

the optimal solution to the special transportation problem is given by Pig, 1f
with cost ZS = 9. This optimal solution assigns the uses UL, U2, U3, U4, U5
to sources 83, S1, 52, S&4 and S1 respectively, the same solution as in [4],

Figure 2 shows the branch-and-bound tree at the end of the computation,

Figure 2 about here

From a computational point of view, it is uot necessary to store the
problems Pk for keS. It is cnough if we store the sets Qk and Yk tor
keS. To construct Pl from the original problem P, we first set dij L
for (i,j)e VY. Next, for every (i,})eQ we drop column j and modd fy bi
to b, - rj. Finally we eliminate those cells (1,]) with jeJ for which

1

.-.:oo).

rj > bi {(by defining dij
It is interesting Lo compare our algorithm to the fmplicit enumeration
approach in [4], 1he latter starts out with the solution of the total cost 2’
obtained when cach use j is assigned to that source 1 with the least cost
iy The feasibility condition (14) is -atisfied at every step but mot (11).
On the other hand, our procedurc starts with the least cost optimal solution

to P of cost 2" and maintalus the feasibility condition (11) but not (14),

Denoting by 2 the optimal cost of the special transportacion problem, the

relative efffciency of the algorithms will vavy across problems depeonding vu

ve
vhother 27 or 2" 4w closer to & . As neantioned earlier, for problems with
i odarge M the dndeasibllMty of (14) s velutively swall so tnat our al-

govithm i better sultwd Lor such preblems, Oun the other hand for probdlems
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for which the ratio M/W is small, the all zoro-one algorithm of {4] can
he vxpected to be more efficicent.
Finally it should be pointed out that although this algorithe hes
been developed using the primal metbod as a subroutine for sclving transpovta-
tion prodlems, other methods such as the primal-dual methods could also be

used,

J,  EXTEN (ON. AND APPLICATIONS

We {irst Fformulate an extension of the special tramsportation problem
Where the capacities hi can Le increased by anilt cost-gi. Denoting by g the
additional ~apacity of source |, equations (10) and (11) are mociiied to

hecame (15Y=710)Y Sueime:

e o fge, +0 T Ay b ane %)
i‘,‘.l { i JG.}' IJ L‘ . : .
Tyl b, by for tel : -:16)_:

Let ie denote by by the maxinum additionel capuclty thet can be udded Lo
souvee b il there is ﬁo ~uen conzhraiat, hi can he get cqual to a very -
large uum%ef). As. o -further gcnnra}lzaciun lut gi deaote the unit ¢ost

of not utilizing the cupaétty 6€7§c.rco:_l' (if this involves » unlt uving
thon _g; wouid be negative! anc let q{ (> Q) denote che minfaum utilizae B
tion levg! for swuree L, 'bﬁfiﬁins 9 b1 - q; _the.fotlcwins fn&&tions'
hold tor the siack uae M+ 1:_-

d for isI. and . S , ¥

R S

Vil 2 Y fov iel. , ' (18)

CThe additional capacities u,  can bu thought of as a aurplus use (M + 2),

We now dotine
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J" = 3w {2, and (19)
yi,l'l+2 ] hi-ui for tel. (20)
Furthermore, since 0 < uw = hi' we have
“ ot iel, 2
0~ Y w2 = Y for iel 2D
The objective function (15) becomes
2= 7.+ 7 < d,.y. . (22)
0 i
20 jed RIS
where 20 = = gihi and (23)
iel
M 3 - B 6
di,M+2 = =g fox igl _ (24)
The constraints {162 become
- ’ + W, fov ial,
}43" u o b, +h, for isal (25)

Phe consteaints (12) aold as usual for jed. But for the dummy ses (ML), (12)
shewld be modified o

T v Y ip, +u)- ¥ r,
RO _
PSSR L P D L R P B

s that from (20) we obtain

" by +h) - T ow (26)

- _u } ) l V* ':,: -\‘, " 1
Cper DL G TR jer 4

Thy constraint €263 {2 hot a ropular transportation constraint since it
tavndes variablet from (wo columns,  To bring it to standerd transportation

frai'th wWe l‘h‘fnu‘

) a ¥ . o ‘ ) ' .
Yori el % o Y me1 and 27)
¢ as - w -' ) 9
N TR T Y - (28)

“

“wheve &3 and N, ave large positive numbers so that Yl bl and

Vel 00 nommegative,  gousequently (26) becomes
" wht, ; -
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y +y = Tr, - E(bth )+ N ~+N (2%)
WL, ML T TWHL M2 je3 3 ger b 1 2

for jeJ), (29) becomes

T ¥ «- Ir L (b, #h )+ N +N (0
J‘Jll Wel, ] jed 3 fey 1 % 1 2
Finally, by defining
I'm 1y f(wi)]} (1)

the constraints (27)-(28) can be rewritten as

15;' yi.H*l N1 aud | {32
, 1)
ifx,’x.mz - . (33)

Flgures 3 summarizes the capacitated (or upper bounded) transportagion

formulation of this problem. The special transportacicn problem has the

additional constraint (134) that each use jeJ bas to he supplied be aniy
once (possibly different) source icl,

Au slgoritha for this generalized problam should be uvbvious, We

" can utilize cthe same branch and bound procedure of Section 2 with cha

capacitated transportation formulation of Figure 3, However, rhe implicit

enumoration algorithm of [4] is wot capable of such an easy extension (ai-

_though DeMaio and Roveda {4] in their concluding discussion suggest the

problem generalizution considered here).

Though the special transportation model concerns irself with sources
and uses typically considered as warchouses and markets, we wish to parat oul
that it offers an important generalization to assigmment madels. (For other
interesting and important assignment problem generalizations see the paper 121

by Charnes, Cooper, Nichaus and Stedry.) Consider, for {nstance, assipgning

o> it i i i s
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jobs to machines in a case when it may be prohibitive to do the same job
on mcre than one machine (perhaps because of set-up cost considerations).

Denoting by rj the time required to perform the job 1}, bi the time

available on machine i and ¢ the cost of performing job j on machine

i)
we obtain the special transportation problem (1)-{4). Similarly, this model

can also be utilized in assigning workers tn supervisors {(or students to

advisors) where r, is the time needed to suparvise the j-th worker, These

b
applications suggest a further extension of problem (1)=(4) where (2) is

replaceu by

L r,. X '5 b, for iel , ~ (34)
jeJ ij "1 i _
t.0., rij is not necessarily constant for all iecl; in other wovds job §

might be done with differing efficiencies by each of the machines. Tha
branch and bound procedur§ of Section 2 would then have to be applied to a

generalized transporvtation problem [1,6] with columa denlndq-equc13:6 unicy.

4, CONCLUSIONS

In this paper we have considered a special class of transporhatiou_

i,

problems of assigning uses to sources and provided.a branch and bound solution

procedure with the standard transpovtation problem us a subroutine, Comparcd

to the implicit‘euumerution approach in [4] this algori:hm ippéa;s to be com-

’putationnlly more efficient particularly for problems where the nusber of uses.

greatly exceeds the numbor of sources,
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- Transportation Tableaus for the Example
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Transportation Tablcaus fo. the Example.

Q, = {0}, 4={G.,D}, 2, = 12
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=10 2z,=122 =28/312

2 =9
6 7NR 4 NR 3 R
R Optimal Solution

Fig. 2
Branch and Bound Tree Diagram at Optimum
Note 1. R = Row-unique optimal basis; NR = Non row-unique optimal basis

Note 2, The label (2,2) connecting P, and P, indicates that '92 {s obtained

from P1 by constraining its optimum solution to include the cell

(2,2). Similarly P, is obtained from P, by excluding the cell (3.4)

from its optimal solution (denoted by (ETZ)).
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Uses Slack Surpl:s
use use
U1 U2 . Uj « b“ UM+1 UH+2 Capacities
§ {
1 l b1+h1
S2 l b2+h2
. i .
Sources * | *
i |— —— — cij/rj - = =% B¢ bty
. {» .
. * ~ ~ o vy
Sout s | Gh}‘osz £ r 4N, - 505, %, )
utce S . N ) N o « (b, #h
| Demands 3 x2 , o ri . e s r“ ﬁ! Rz

CFig. 3

‘fransportation Forzat for the Generalized Problem

Note: 1. In cach cell the numbor at eh§ center denotes the unit cnst &
 The nuaber at the opper righthand covaer denotes ah upper bound
. for the cell (if this is blank this icplies that theve s W0

vpper bound), ‘ 4

2. N, by, Hz-denote'very lakge positive uuabers.-_‘




